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Problem 1

(i) True.

The radius of convergence of the given function is
(

lim sup
n→∞

( 2n

n! )
1
n

)−1
=∞. The

function
∞∑
n=0

2nz3n

n! is the power series expansion of e2z
3

, which is an entire func-

tion.

(ii) True.
Consider the contour formed by Ce(0). Let f(z) = 1 + ez + ez. Then from the

Cauchy integral formula we have f (2)(1) = 2!
2πi

∫
Ce(0)

f(z)
(z−1)3 dz. From the choice

of f , we have f (2)(1) = e1 = e. Therefore give assertion is true.

Problem 2

Choose r > 0, such that there is no zero of f in Br(z0) other than z0. Because
f has a zero of order m at z0, we can write f(z) = (z − z0)mg(z). Therefore in

Br(z0), f can be written as f ′(z)
f(z) = m

z−z0 + g′(z)
g(z) . By the choice of Br(z0), g′

g

is analytic in Br(z0) and hence
∫
Cr(z0)

g′(z)
g(z) dz = 0. From the Cauchy integral

formula we have
∫
Cr(z0)

m
z−z0 = 2πim. Therefore for this choice of Cr(z0), we

have shown that 1
2πi

∫
Cr(z0)

f ′(z)
f(z) = m.

Problem 3

The radius of convergence for the power series
∞∑
k=0

akz
k is R = (lim sup

n→∞
|an|

1
n )−1.

Given that
∞∑
k=0

|ak|2 < ∞, therefore for any fixed 1 > ε > 0, we have Nε such

that |an| < ε for any n > Nε. Therefore lim sup
n→∞

|an|
1
n ≤ 1 and hence R ≥ 1.

Therefore the given series is analytic in B1(0) and hence holomorphic.

∗Send an email to tulasi.math@gmail.com for any clarifications or to report any errors.
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Problem 4

(i) Because f(C)∩B1(0) is empty, f doesn’t have any zero, hence the function 1
f

is well defined and is entire. From the hypothesis we get | 1f | ≤ 1. We know that
any bounded entire function is a constant function. Therefore f is a constant
function, with the absolute value of the constant being at-least 1.

(ii) Consider the function g, defined as g(z) = f(z)− f(z + 2π). Given that f
is 2π periodic when restricted to real line. Therefore g(z) = 0, whenever z ∈ R.
But R is not a discrete set in C, hence g ≡ 0. Therefore we get f(z) = f(z+2π)
for any z ∈ C

Problem 5

The function ef(z) cannot assume the value 0. Therefore 0 is not in the domain
U . Solving the equation ef(z) = z, we get f(z) = log z. Because 0 /∈ U and f is
continuous, for any z ∈ U , the function f(z) = log z (choose the principal branch
of logarithm) is well defined in a small enough neighborhood of z, which also
analytic in that neighborhood. Therefore f is holomorphic in U . Differentiating
the equation ef(z) = z on both the sides, we get f ′(z)ef(z) = 1. Now substituting
the given identity, we get zf ′(z) = 1. Therefore f ′(z) = 1

z .

Problem 6

Let I =
∫
γ

f(z)f ′(z)dz =
∫
γ

f(z)df(z). Then, I =
∫
γ

f(z)df(z).

2Re(I) = I + I =

∫
γ

(f(z)df(z) + f(z)df(z)) =

∫
γ

d(f(z)f(z)) = 0.

Therefore I is purely imaginary.

Problem 7

Consider the following integral identity.

1∫
0

(z − w)ew+t(z−w)dt = ez − ew.

Because Re(z) < 0 and Re(w) < 0, we have |ew+t(z−w)| ≤ 1. Therefore,

|ez − ew| =
∣∣ 1∫
0

(z − w)ew+t(z−w)dt
∣∣ ≤ 1∫

0

|(z − w)ew+t(z−w)|dt ≤ |z − w|.

Problem 8

Given f ∈ Hol(C) and f ′′( 1
n ) + f( 1

n ) = 0 for all n ≥ 1. Because f ∈ Hol(C),
we have f ′′ + f ∈ Hol(C). By continuity of f ′′ + f , we have f ′′(0) + f(0) = 0.
But, zeros of non-trivial holomorphic function are discrete and 0 is a limit point
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of the set { 1n : n ≥ 1}. Therefore, we have f ′′ + f ≡ 0. Because f is an entire

function, let the power series expansion of f be f(z) =
∞∑
n=0

anz
n. Substituting

the power series expansion of f in the identity f ′′ + f ≡ 0 we get,

an + (n+ 2)(n+ 1)an+2 = 0 for every n ≥ 0.

By solving these equation recursively we obtain

a2n = (−1)n
a0

(2n)!
and a2n+1 = (−1)n

a1
(2n+ 1)!

for every n ≥ 0.

Therefore f(z) = a0cos(z) + a1sin(z). These are the only functions that
satisfy the given property.
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