Complex Analysis Solutions *

Mid-Semester 2014-2015

Problem 1

(i) True.

The radius of convergence of the given function is $\left(\limsup_{n\to\infty}\left(\frac{2^n}{n!}\right)^{\frac{1}{n}}\right)^{-1} = \infty$. The function $\sum_{n=0}^{\infty}\frac{2^nz^{3n}}{n!}$ is the power series expansion of e^{2z^3} , which is an entire function.

(ii) True.

Consider the contour formed by $C_e(0)$. Let $f(z) = 1 + ez + e^z$. Then from the Cauchy integral formula we have $f^{(2)}(1) = \frac{2!}{2\pi i} \int_{C_e(0)} \frac{f(z)}{(z-1)^3} dz$. From the choice of f, we have $f^{(2)}(1) = e^1 = e$. Therefore give assertion is true.

Problem 2

Choose r > 0, such that there is no zero of f in $B_r(z_0)$ other than z_0 . Because f has a zero of order m at z_0 , we can write $f(z) = (z - z_0)^m g(z)$. Therefore in $B_r(z_0)$, f can be written as $\frac{f'(z)}{f(z)} = \frac{m}{z-z_0} + \frac{g'(z)}{g(z)}$. By the choice of $B_r(z_0)$, $\frac{g'}{g}$ is analytic in $B_r(z_0)$ and hence $\int_{C_r(z_0)} \frac{g'(z)}{g(z)} dz = 0$. From the Cauchy integral formula we have $\int_{C_r(z_0)} \frac{m}{z-z_0} = 2\pi i m$. Therefore for this choice of $C_r(z_0)$, we have shown that $\frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f'(z)}{f(z)} = m$.

Problem 3

The radius of convergence for the power series $\sum_{k=0}^{\infty} a_k z^k$ is $R = (\limsup_{n \to \infty} |a_n|^{\frac{1}{n}})^{-1}$. Given that $\sum_{k=0}^{\infty} |a_k|^2 < \infty$, therefore for any fixed $1 > \epsilon > 0$, we have N_{ϵ} such that $|a_n| < \epsilon$ for any $n > N_{\epsilon}$. Therefore $\limsup_{n \to \infty} |a_n|^{\frac{1}{n}} \le 1$ and hence $R \ge 1$. Therefore the given series is analytic in $B_1(0)$ and hence holomorphic.

^{*}Send an email to tulasi.math@gmail.com for any clarifications or to report any errors.

Problem 4

(i) Because $f(\mathbb{C}) \cap B_1(0)$ is empty, f doesn't have any zero, hence the function $\frac{1}{f}$ is well defined and is entire. From the hypothesis we get $|\frac{1}{f}| \leq 1$. We know that any bounded entire function is a constant function. Therefore f is a constant function, with the absolute value of the constant being at-least 1.

(*ii*) Consider the function g, defined as $g(z) = f(z) - f(z + 2\pi)$. Given that f is 2π periodic when restricted to real line. Therefore g(z) = 0, whenever $z \in \mathbb{R}$. But \mathbb{R} is not a discrete set in \mathbb{C} , hence $g \equiv 0$. Therefore we get $f(z) = f(z + 2\pi)$ for any $z \in \mathbb{C}$

Problem 5

The function $e^{f(z)}$ cannot assume the value 0. Therefore 0 is not in the domain U. Solving the equation $e^{f(z)} = z$, we get $f(z) = \log z$. Because $0 \notin U$ and f is continuous, for any $z \in U$, the function $f(z) = \log z$ (choose the principal branch of logarithm) is well defined in a small enough neighborhood of z, which also analytic in that neighborhood. Therefore f is holomorphic in U. Differentiating the equation $e^{f(z)} = z$ on both the sides, we get $f'(z)e^{f(z)} = 1$. Now substituting the given identity, we get zf'(z) = 1. Therefore $f'(z) = \frac{1}{z}$.

Problem 6

Let
$$I = \int_{\gamma} \overline{f(z)} f'(z) dz = \int_{\gamma} \overline{f(z)} df(z)$$
. Then, $\overline{I} = \int_{\gamma} f(z) d\overline{f(z)}$.
 $2Re(I) = I + \overline{I} = \int_{\gamma} (f(z) d\overline{f(z)} + \overline{f(z)} df(z)) = \int_{\gamma} d(f(z) \overline{f(z)}) = 0$

Therefore I is purely imaginary.

Problem 7

Consider the following integral identity.

$$\int_{0}^{1} (z-w)e^{w+t(z-w)}dt = e^{z} - e^{w}.$$

Because Re(z) < 0 and Re(w) < 0, we have $|e^{w+t(z-w)}| \le 1$. Therefore,

$$|e^{z} - e^{w}| = \Big| \int_{0}^{1} (z - w)e^{w + t(z - w)}dt \Big| \le \int_{0}^{1} |(z - w)e^{w + t(z - w)}|dt \le |z - w|.$$

Problem 8

Given $f \in Hol(\mathbb{C})$ and $f''(\frac{1}{n}) + f(\frac{1}{n}) = 0$ for all $n \ge 1$. Because $f \in Hol(\mathbb{C})$, we have $f'' + f \in Hol(\mathbb{C})$. By continuity of f'' + f, we have f''(0) + f(0) = 0. But, zeros of non-trivial holomorphic function are discrete and 0 is a limit point of the set $\{\frac{1}{n} : n \ge 1\}$. Therefore, we have $f'' + f \equiv 0$. Because f is an entire function, let the power series expansion of f be $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Substituting the power series expansion of f in the identity $f'' + f \equiv 0$ we get,

 $a_n + (n+2)(n+1)a_{n+2} = 0$ for every $n \ge 0$.

By solving these equation recursively we obtain

$$a_{2n} = (-1)^n \frac{a_0}{(2n)!}$$
 and $a_{2n+1} = (-1)^n \frac{a_1}{(2n+1)!}$ for every $n \ge 0$.

Therefore $f(z) = a_0 \cos(z) + a_1 \sin(z)$. These are the only functions that satisfy the given property.